WAGENINGEN UNIVERSITY, CARUS

Research topics:	The research facility of Wageningen University (WU) 'Carus' is
	a state of the art facility for applied and strategic research
	concerning farm and companion animals. Research at Carus is
	conducted in the fields of sustainable animal husbandry.
	behaviour and welfare, biology and aquaculture. For the
	present TNA in SmartCow, the description below focuses on
	cattle Research with dairy cattle at Carus focuses on nutrition
	nhysiology health and environmental impacts of milk
	production including aspects of milk composition and human
	health. The facility includes climate respiration chambers.
	characterized by a high level of accuracy and flexibility for
	research on gas emissions (CO_2 ¹³ CO_2 NH ₂ CH ₄ H ₂ etc.)
	digestion and energy metabolism
	Selected publications of studies performed at the WII 'Carus'
	facilities include:
	Van Gastelen S. Antunes-Fernandes F.C. Hettinga K.A. & Diikstra
	J. (2018). The relationship between milk metabolome and
	methane emission of Holstein Friesian dairy cows: Metabolic
	interpretation and prediction potential. Journal of Dairy Science 101, 2110-2126
	Klop, G., Dijkstra, J., Dieho, K., Hendriks, W.H. & Bannink, A. (2017).
	Enteric methane production in lactating dairy cows with
	continuous feeding of essential oils or rotational feeding of
	assential oils and lauric acid. Journal of Dairy Science 100,
	Macome F. Pellikaan W.F. Schonewille I.T. Bannink A. Laar H
	van, Hendriks, W.H., Warner, D. & Cone, J.W. (2017). In vitro
	rumen gas and methane production of grass silages differing in
	plant maturity and nitrogen fertilisation, compared to in vivo
	enteric methane production. Animal Feed Science and
	Technology 230, 96 - 102.
	Van Gastelen, S., Antunes-Fernandes, E.C., Hettinga, K.A. & Dijkstra,
	J. (2017). Relationships between methane emission of Hoistein Eriogian dainy cowy and fatty acids, volatile metabolitos and
	non-volatile metabolites in milk. Animal 11, 1539-1548.
	Van Gastelen, S., Visker, M.H.P.W., Edwards, J.E., Antunes-
	Fernandes, E.C., Hettinga, K.A., Alferink, S.J.J., Hendriks, W.H.,
	Bovenhuis, H., Smidt, H. & Dijkstra, J. (2017). Linseed oil and
	DGAT1 K232A polymorphism: Effects on methane emission,
	energy and nitrogen metabolism, lactation performance,
	ruminal fermentation, and rumen microbial composition of
	Holstein-Friesian cows. Journal of Dairy Science 100, 8939-
	Van Lingen H.I. Edwards I.E. Vaidva I.D. van Gastelen S
	Saccenti, E., van den Bogert, B., Bannink, A., Smidt, H., Plugge,
	C.M. and Dijkstra, J. (2017). Diurnal dynamics of gaseous and
	dissolved metabolites and microbiota composition in the
	bovine rumen. Frontiers in Microbiology 8, 425.
	Warner, D., Bannink, A., Hatew, B., van Laar, H. & Dijkstra, J. (2017).
	Effects of grass slage quality and level of feed intake on enteric
	methane production in lactating dairy cows. Journal of Animal
	Antunes-Fernandes, E.C., van Gastelen, S., Diikstra, L. Hettinga, K.A.
	& Vervoort, J. (2016). Milk metabolome relates enteric

	methane emission to milk synthesis and energy metabolism
	pathways. Journal of Dairy Science 99, 6251-6262.
	Ellis, J.L., Hindrichsen, I.K., Klop, G., Kinley, R.D., Milora, N., Bannink,
	A. & Dijkstra, J. (2016). Effects of lactic acid bacteria silage
	inoculation on methane emission and productivity of Holstein
	Friesian dairy cattle. Journal of Dairy Science 99, 7159-7174.
	Hatew, B., Bannink, A., van Laar, H., de Jonge, L.H. & Dijkstra, J.
	(2016). Increasing harvest maturity of whole-plant corn silage
	reduces methane emission of lactating dairy cows. Journal of
	Dairy Science 99, 354-368.
	Huyen, N.T., Desrues, O., Alferink, S.J.J., Zandstra, T., Verstegen,
	M.W.A., Hendriks, W.H., & Pellikaan, W.F. (2016). Inclusion of
	sainfold (Unobrychis viciljolid) sliage in dairy cow rations affects
	muthem agestionity, mitrogen utilization, energy balance, and
	Hernane emissions. Journal of Dairy Science 99, 3500 - 3577.
	Kipp, G., Ballillik, A., Dielio, K., Gerris, W.J.J. & Dijkstra, J. (2010).
	offects of nitrate and decessboyconois asid on fiber
	degradation in the rumon of loctating dainy cower lournal of
	Dairy Science 00, 7216-7220
	Delonge I H. van Laar H. & Diikstra I (2015) Estimation of the in
	situ degradation of the washout fraction of starch by using a
	modified in situ protocol and in vitro measurements. Animal 9
	1465-1472
	Van Gastelen, S., Antunes-Fernandes, F.C., Hettinga, K.A., Klop, G.,
	Alferink, S.J.J., Hendriks, W.H. & Dijkstra, J. (2015). Enteric
	methane production, rumen volatile fatty acid concentrations,
	and milk fatty acid composition in lactating Holstein-Friesian
	cows fed grass silage- or corn silage-based diets. Journal of
	Dairy Science 98, 1915-1927.
	Warner, D., Podesta, S.C., Hatew, B., Klop, G., van Laar, H., Bannink,
	A. & Dijkstra, J. (2015). Effect of nitrogen fertilization rate and
	regrowth interval of grass herbage on methane emission of
	zero-grazing lactating dairy cows. Journal of Dairy Science 98,
	3383-3393.
	Warner, D., Dijkstra, J., Tamminga, S. & Pellikaan, W.F. (2013).
	Passage kinetics of concentrates in dairy cows measured with
	carbon stable isotopes. Animal 7, 1935-1943.
	Warner, D., Ferreira, L.M.M., Breuer, M.J.H., Dijkstra, J. & Pellikaan,
	W.F. (2013). Stable isotope labeled n-alkanes to assess digesta
	passage kinetics through the digestive tract of ruminants. PLoS
	UNE & (10), 875496.
Activities and services currently	The recearch facility Carus is a small-scaled, high tach facility
offered by the	for a wide range of animals. For dainy cattle, research is
infractive (installation)	for a wide range of animals. For dairy calle, research is
Intrastructure/Installation:	performed in the free-stall barn, tie-stall, and in respiration
	chambers, on digestion and metabolism including resource
	efficiency, methane emissions and nitrogen (N) and
	phosphorus (P) efficiency. The research facility is in close
	collaboration with the Wageningen University & research
	facility 'Dairy Campus' (Leeuwarden, the Netherlands; 550
	dairy cows), for example in expanding the pool of cows
	available for research. The ruminant research facility of Carus
	has a maximum of 32 lactating and 8 dry dairy cattle. Carus has
	supporting in-house surgical facilities. The farm has 4 ha of
	grassland for grazing and 20 ha for ensiling purposes. Maize

	silage is bought elsewhere. The facility includes climate
	respiration chambers, characterized by a high level of accuracy
	and flexibility. Fight individual cow climate respiration
	chambers are available to measure gaseous exchange and
	chambers are available to measure gaseous exchange and
	energy metabolism of cows, with adaptation to diets usually
	taking place in the tie-stall. This unique facility can be used for
	research on gas emissions (CO ₂ , ¹³ CO ₂ , NH ₃ , CH ₄ , H ₂ etc.),
	digestion, and energy metabolism. 12 cows can be individually
	housed in tie-stalls, mainly for digestion studies.
	Animal performance (milk production and composition)
	Administration and body condition score is recorded. On every
	body weight and body condition score is recorded. On average
	12 rumen-fistulated cows are available for research including
	abomasal infusion studies. The facilities allow measurements
	of rumen and total tract digestibility, N balance, and digesta
	fractional passage rates performed using a combination of
	total collection and external markers. The diurnal pattern of
	rumen nH volatile fatty acids and ammonia concentrations
	and in city (pylon bag) degradability of foods are measured via
	and in situ (hylon bag) degradability of feeds are measured via
	rumen fistula, and animals can be abomasally infused if
	required. Nearby laboratory facilities are also available for
	measurements of in vitro degradability of feeds using gas
	production techniques. Technical and farm staff members are
	highly skilled to support experimental research work. At Carus,
	in addition to strictly scientific research, an average of 2-3
	projects a year are carried out at the request of multinational
	projects a year are carried out at the request of mutinational
	private companies, mainly in the neus of animal recurring,
	genetics, and animal nousing and husbandry. Previous cutting-
	edge research includes the measurement of rumen passage
	rates using ¹³ C labeled plant material; lactic acid bacteria silage
	inoculants in relation to energy and nitrogen balance of cows;
	and research into dietary CH ₄ mitigation options including
	changes in gaseous exchange of H ₂ and other gases.
Description of the access to be	Access includes animals (including rumen fistulated animals if
provided under SmartCow TNA calls:	available) animal housing (respiration chambers in particular)
	preparation feeding and daily care. Support offered under this
	proposal also includes experienced staff providing full
	proposal also includes experienced start providing full
	technical and logistic support to users. Adjacent laboratories of
	the Animal Nutrition Group can provide complementary
	expertise and additional technologies where
	necessary/requested. Users can be present and may
	participate in the experiment, according to their preferences
	and practical competencies, subject to legal restrictions as to
	animal experimentation. The unit of access for this installation
	is defined as one cow.week, with 3 wks per cow to complete
	methane and energy halance. One tynical access for a project
	(94 units of access) source proparatory work which will be
	(84 units of access) covers preparatory work which will be
	required at least 4 months before the access to facilities, and
	help with data analysis, also training in use of equipment
	(graduate students). Approval of Animal Ethics committee
	requires at least 6 mths in advance. The data collected will
	respect the SmartCow data management plan to allow their
	integration into the cloud-based database. Offices and
	meeting rooms with internet connection are available.

	Assistance with finding short-term accommodation can be provided
Animal types, diets. housing and	A wide range of animals may be evaluated at Carus facilities.
experimental conditions that can be	including farm animals and companion animals. In the
worked on in this	SmartCow project, dry and lactating cattle are of interest.
infrastructure/installation:	Housing of dairy cattle is in a free-barn, in tie-stall (digestion
	studies mainly), or in climate-controlled respiration chambers
	(for methane and energy metabolism studies mainly). Diets
	may vary and may include grass silage, maize silage, and
	concentrate; other feeds may be bought and used. In climate
	respiration chambers, environmental conditions (e.g.,
	light/dark period, temperature and humidity) may be set at
	desired levels.
I ravel and subsistence costs:	Travel/subsistence costs for applicants in WU experiments at
	Carus facilities is available. Reimbursement is limited to one
	subsistence costs of applicants can be reimbursed on
	production of original receipts
Infrastructure/installation ethical	WU has animal facilities that are licensed by the Dutch
rules:	Government to perform studies with animals for experimental
	purposes. Animal experimental work is carried out at WU in
	accordance with the European Directive 2010/63/EU on the
	protection of animals used for scientific purposes regulation,
	S.I. 543/2012. The EU Directive aims for better protection of
	animals involved in scientific research; fair competitive
	conditions for businesses and scientific research within the EU;
	encouraging the application of the 3R's (i.e., replacement,
	reduction and refinement). The Dutch legislation is available at
	<u>nttp://wetten.overneid.nl/BWBR0003081/2014-12-18</u> . In the
	Experiments on Animals Act (WOD, 2014). The principle
	behind this Act is that no experiments should be conducted on
	animals unless there are good reasons for doing so, and no
	alternatives are available that would produce the result
	without using animals.
	At WU, the procedure for animal experiments is as follows.
	A research project proposal is submitted to the local Animal
	Welfare Body (AWB) of WU. After approval by AWB, WU sends
	the application to the Animal Experiment Committee (AEC) of
	WU. The AEC will review the scientific quality of the proposal
	and makes an ethical decision based on the potential
	discomfort in relation to the importance of the experiment.
	Control Authority for Scientific Procedures on Animals (CCD)
	(see: https://www.centralecommissiedierproeven.nl/) If
	granted, the CCD issues the license for the project.
	Subsequently, every animal experiment in the authorized
	project has to be approved by the AWB of WU. Only after
	approval by AWB, the experiment can start. The application of
	the 3Rs is considered at WU: i) replace animal experiments by
	in vitro investigations or in silico simulations whenever
	possible; ii) reduce the number of animals involved to the
	necessary minimum for each experiment; and iii) refine

experimental protocols in order to diminish to a minimum the amount of stress imposed on those animals that will be used. In compliance to the legislation, all researchers, assistant researchers and technicians employed at WU possess the necessary qualifications to perform experiments with (farm) animals, and hold a certificate of competence required by law.
animals, and hold a certificate of competence required by law, that was obtained after satisfactory completion of an official course on Laboratory and Farm Animal Science.