Methane Measurements and Proxies

Gemma Miller and Rainer Roehe
GreenCow Respiration Chambers

- Six respiration chambers
- Six training pens
- Feed intake recording equipment
Extensive experimental records

Feed and productive efficiency

- Feed intake (Hoko)
- Live-weight gain
- Feed efficiency & RFI
- US fat and muscle depth
- CH₄ – hood systems

Chamber based measurements

- Methane measurements
 - Feed intake
 - Live-weight
 - Rumen samples
 - Faecal samples
 - Feed characterisation

Carcass and meat quality based measurements

- EUROP grades
- VIA information
- Loin samples
 - Sensory
 - Fatty acid profiles
 - Vitamin E
 - Colour shelf life
2011 – 2013 UK GHG Inventory

• Almost 500 animal data-points supplied by SRUC
• Cattle (cows and finishing animals) and sheep.
• Range of breeds and diets.
• Development of UK enteric methane emission factors.
• Moving from IPCC Tier 1 to Tier 2/3.
Dietary Manipulation

Nitrates

- 20% decrease in Methane (g/kg DMI) for Coriander oil additive.

- Coriander silage reduces Methane by 8-9% compared to Control.

Lipids

- 7.5% reduction in Methane for Coriander oil additive.

- Methane reduction for Barley straw compared to Silage.

Forage Type

- Grass silage versus Red Clover silage shows a P < 0.05 difference in Methane (g/kg DMI).
Proxy Measurements at SRUC

- Estimates or predicts individual animal methane production

Sniffer hoods

Methane gun

Methane Collars

SF6

Rumen Microbiome
SmartCow: SRUC’s beef research facilities to study associations of the rumen microbiome with traits important for beef production

Rainer Roehe
Host Genetics and Microbiome

- Complex (genetic) interactions
- Methane
- Rumen microbial composition
- Diet
- Feed conversion efficiency
- Meat fatty acid profiles & Animal health
Variation in Methane Emissions g/day between Animals

<table>
<thead>
<tr>
<th></th>
<th>Forage</th>
<th>Concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Angus x</td>
<td>172–333 g/day</td>
<td>78–233 g/day</td>
</tr>
<tr>
<td>Limousin x</td>
<td>152–266 g/day</td>
<td>86–216 g/day</td>
</tr>
</tbody>
</table>

Large differences in methane emissions between animals

CV = 14% – 32%
Variation in Archaea:Bacteria Ratio between Animals using Samples collected on Slaughtered Animals

<table>
<thead>
<tr>
<th></th>
<th>Forage</th>
<th>Concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Angus x</td>
<td>1.5 – 11.0</td>
<td>0.9 – 5.8</td>
</tr>
<tr>
<td>Limousin x</td>
<td>2.2 – 14.0</td>
<td>1.4 – 4.9</td>
</tr>
</tbody>
</table>

Extreme large differences in Archaea:Bacteria ratios between animals

CV = 35% – 50%
Roehe et al. (2016) PLOS Genetics
Deep Sequencing of DNA from Rumen Microbes

<table>
<thead>
<tr>
<th>Metagenomic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial community</td>
</tr>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>e.g. Archaea, Bacteria</td>
</tr>
</tbody>
</table>

- **Domain**: e.g. Archaea, Bacteria
- **Phylum**: e.g. Bacteroidetes, Proteobacteria
- **Genus**: e.g. Methano-brevibacter, Methanosphaera
- **Gene-centric**: Microbial genes, e.g. KEGG gene orthologues
Network of Rumen Microbial Genes

3970 microbial genes

20 genes explaining 81% of VAR in methane emissions

Methane emissions
Methane emissions & mcrA gene

\[\text{mcrA} = \text{methyl-coenzyme M reductase alpha subunit} \]

Roehe et al. (2016) PLOS Genetics
Considering only the clusters including most microbial genes affecting the FE traits

FCR (18)
ADG (18)
DFI (3)
RFI (3)

FCR (96)
ADG (92)

ADG (21)

DFI (14)
RFI (4)
Selection using rumen microbial information

Sampling rumen fluid in the abattoir or live animals

Determination of rumen microbial gene abundances

Prediction of feed efficiency
 - GEBV FCE

Prediction of methane emission
 - GEBV CH₄

Prediction of health traits
 - GEBV Health

GEBV FCE
GEBV CH₄
GEBV Health
Thank you very much!