Delacon performing nature

Effects of phytogenic feed additives on performance and enteric methane emissions in dairy cattle

P. Pourazad¹, T. Aumiller¹, C. Martin², M. Bouchon², Y. Rochette², T. Aubert¹, K. Wendler¹

¹ Delacon Biotechnik GmbH, Engerwitzdorf, Austria ² Université Clermont Auvergne, INRAE, France

Introduction

Methane (CH₄) is a by-product of rumen fermentation and potent greenhouse gas. There has been an increased interest in the use of phytogenic feed additives (PFA) to modify rumen fermentation and decrease CH_4 emissions¹.

The objective of the current study was to use 3 different PFA to investigate their long-term efficacy on total dry matter intake (DMI, Kg/d), CH_4 production (g/d), milk yield and composition (Kg), in mid-lactating dairy cows.

Material and Methods

<u>Animals:</u> 56 mid-lactating multiparous Holstein cows (120 \pm 46 DIM; 648.15 \pm 64.79 Kg BW) were allocated to 4 groups.

<u>Diet:</u> 4 dietary treatments (n=14 animals/group/treatment); control (CON), without PFA in the diet; prototype 1 (PP1), prototype 2 (PP2), and prototype 3 (PP3) with the addition of PFA (25 g/h/d).

<u>The PFA:</u> Blend of Essential Oils (EO), tannins mixed in the compound feed.

<u>Trial design</u>: After 4 weeks of the basal diet (75% forages based on hay:haylage 25:50, and 25% concentrate, DM basis, Table 1.) cows were gradually switched to an experimental diet for 2 weeks and continued the experimental diets for 3 months.

Location: Experimental Unit Herbipole Marcenat, France.

Jound leed
Diet
51.1
23.7
8.2
6.0
4.1
0.4
5.3
0.1
0.4
0.2
0.1

Results

Data of total DMI (DM, kg/d), milk yield (Kg) (Figure 1; A, B respectively) and milk composition (data not shown), were separately analyzed in 3 periods. No treatment differences in all variables were observed within the different periods.

Table 2: The BW and CH₄ emissions for cows given diets without (CON) or with the inclusion of PFA

Item	Period			SEM	<i>P</i> -Value			
	Period1*	Period2	Period3	Overall		TRT	Period	Interaction
BW (Kg)					15.40	0.16	<0.001	<0.001
Con	709.57	717.17	712.88	713.21				
PP 1	713.51	716.39	710.40	713.43				
PP 2	683.66	685.03	676.61	681.77				
PP 3	713.15	718.89	720.71	717.58				
CH ₄ (g/d)					59.03	0.79	0.49	0.910
Con	487.54	491.54	490.78	501.05				
PP 1	480.30	491.82	513.00	500.83				
PP 2	540.55	511.15	522.41	531.12				
PP 3	528.16	534.79	568.44	552.33				
gCH ₄ /kgDMI					1.03	0.32	0.08	0.005
Control	25.16	25.75	26.10	25.39				
PP 1	25.34	24.26	24.02	24.42				
PP 2	24.21	24.35	24.01	23.99				
PP 3	24.33	23.84	22.73	23.57				
gCH ₄ /kgECM					1.11	<0.001	<0.001	0.327
Con	20.04 ^b	21.01 ^b	22.79 ^b	21.30 ^b				
PP 1	20.53 ^b	21.29 ^b	23.33a ^b	21.78 ^b				
PP 2	24.97ª	24.62ª	25.39ª	25.00ª				
PP 3	22.57ª	21.24 ^b	24.37 ^{ab}	22.73 ^b				
gCH ₄ /kgFCM								
Con	20.70 ^b	21.78 ^b	23.12 ^b	21.87 ^b	1.22	<0.001	0.005	0.274
PP 1	20.87 ^b	21.46 ^b	23.41 ^b	21.91 ^b				
PP 2	26.49ª	25.41 ^a	26.13ª	26.01ª				
PP 3	23.24 ^b	21.74 ^b	24.48 ^b	23.15 ^b				
gCH ₄ /kgNDF					2.32	<0.001	<0.001	0.301
Con	51.82ª	51.66ª	55.83ª	53.10ª				
PP 1	43.02 ^b	43.75 ^b	47.44 ^b	44.78 ^b				
PP 2	51.23ª	49.78 ^{ab}	53.62ª	51.54ª				
PP 3	48.39 ^{ab}	47.42 ^b	49.71 ^{ab}	48.50 ^{ab}				

Chemical composition (% of DM): 74.8% DM, 94.1 OM, 11.1 CP, 58.67 NDF, 33.72 ADF, 1.54 EE, 8.20 Ash, 0.81 NFC Concentrate contained 88.0% DM, 95.8% OM, 17.2% CP, 1.9% EE, and 19.5% NDF (DM basis). Mineral-vitamin premix contained (g/DM): Ca, 2.46; P, 2.32; Mg, 2.85; Na, 2.65; Zn, 0.05; Mn, 0.08; I, 0.00003; Se, 0.00003; Co, 0.00008; Cu, 0.006; vitamin A, 476,000 IU; vitamin D, 80,000 IU; vitamin E, 10.5.

Feed intake, BW, and milk yield were automatically recorded daily during the whole trial. Milk composition was determined twice a week for Milk fat, protein, and lactose. Due to Covid-19 epidemic there were no sampling between WK7 and 11. The CH₄ emissions (g/day) were measured using 2 GreenFeed[®] (C-Lock Inc., Rapid City, SD, USA) systems. The CH₄ emissions were also expressed by unit of intake (CH₄ yield, g/kg DMI), unit of milk produced (CH₄, g/kg FCM and g/kg FCM) and unit of NDF (CH₄ yield, g/kg NDF). All data were analyzed using the MIXED procedure of SAS (version 9.4; SAS Institute Inc.).

32.0 A		DMI (Ka/d)		
30.0				
	Deviced 1			

*Period 1= Week 1 to Week 4, Period 2= Week 5 to Week 8, Period 3= Week 9 to week

-Con -PP1 The BW, total CH₄ and gCH₄/kgDMI remained similar for all treatments between periods (Table 2). The g CH₄ per kg of, ECM, FCM and NDF were affected by treatment ($P \le 0.05$). Between the groups and during the trial cows in control group produced less CH₄. The cows in the PP3 and PP2 group showed a decrease in CH₄ emissions g/kgNDF during Period 2 compared to the period 1 and period 3 (P < 0.05).

Acknowledgements:

Week

"Financial support provided by the Transnational Access to Research Infrastructures activity in the Horizon 2020 Program of the EC (Project 'SmartCow'; no. 730924) is gratefully acknowledged."

Conclusion

Results from the present study showed that current PFA mixtures with current dosage did not have strong affect on intake, milk performances and methane emisions in dairy cows over a 3-month period did not have strong affect on CH₄ concentration. Future studies are required to evaluate the effective dosage of PFA on methane production in the rumen.

Reference:

1 Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P. and Tricarico, J.M. (2014) Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities A d Impact of Reducing Emissions. Journal of Dairy Science, 97, 3231-3261. https://doi.org/10.3168/jds.2013-7234