SmartCow

an integrated infrastructure for increased research capability and innovation in the European cattle sector

WP5 - Evaluation and standardization of nutrient use efficiency and emission measurement techniques

Chris Reynolds, Dave Humphries, Barney Jones, Zoe Barker and Les Crompton (UREAD); Marc Coleman and Tom Gardiner (NPL); Jan Dijkstra, Kelly Nicols, and Marcel Heetkamp (WU); Giulio Giagnoni, Martin Weisbjerg, Peter Lund and Marianne Johansen (AU); Bjoern Kuhla et al. (FBN); and R. Bellagi, R. Baumont, L. Salis, S. Alcouffe, G. Cantalapiedra-Hijar, and P. Nozière (INRAE)

SmartCow – WP5 Approach and methodology of the WP

- AIM: To identify and address sources of variation in key in vivo measurements of dietary nutrient use efficiency and associated emissions of methane and nitrogen by cattle
- Key Measurements within SmartCow:
 - Feed digestion and N balance, including excretion in urine and faeces (feed and N efficiency)
 - Methane emissions
- Key concerns: precision, accuracy, animal welfare
- Results will be assembled and analyzed to determine variation due to location, sources of experimental error, and animal variation.
 - measurement error addressed to:
 - Increase precision (Refine) and Reduce animal use

SmartCow – WP5 *Meta-Analysis of N balance data*

Aim: To explain sources of variation

	% Variation explained		
Retained N	Urine N	Faecal N	
55	46	60	
36	28	38	
2	3	9	
15	0	7	
22	10	20	
3	9	22	
21	12	4	
500	750		
	55 36 2 15 22 3	55 46 36 28 2 3 15 0 22 10 3 9 21 12	

N intake

Sources of variation

- Experiment and Site explain a high proportion of the variation in the data
- Suggests how methods are used (human behaviour) contributes to variation across sites rather than method per se

SmartCow – WP5: DIGESTIBILITY & N BALANCE EQUIPMENT

New urine and faecal collection equipment

- New steer equipment developed
 Vacuum system, stir plates for acid
- Skin 'safe' glues for dairy cow urine collection cups
 New designs for 'modern' cows one size does not fit all!

Local Assessments of Sources of Variance

Sources of variation for digestion and N balance measurements evaluated at each SmartCow Installation

- Method evaluation as appropriate for local methods, e.g.:
- Days of sampling (INRAE and Uread)
- Volatile N losses and N analysis method (WU and FBN)
 - N intake higher with Dumas N analysis of feed (~4.5%)
 - Measuring volatile N loss reduces N balance
- Spot sampling for faecal markers (AU)
 - 3 samplings (morning, early afternoon, late afternoon) over 2 consecutive days.
- Results reviewed and discussed (January Workshop)
 - Agreed key factors especially attention to detail!

FBN for WP5

Deviations in N-intake due to different sample processing

Dried feed: 60°C, 2d

Frozen fresh feed: ground in CO₂

Quantifying volatile N-losses while not collecting urine/faeces

4-7 g excreta N loss /d

INRAE - Repeatability according to the length of measurement

Digestion and N Balance over 2 measurement periods with 16 growing bulls receiving 2 diets

Repeatability increases with the length of collection period with values around 65% and 35% for DM digestibility and N balance, respectively, for 10 days

INRAE — Minimum detectable difference (MDD) according to the length of measurement

Bellagi et al., EAAP 2022, Animal in preparation

The minimum detectable difference decreased with the length of measurements and number of animals:

With 16 animals/treatment and 10d of measurement a difference of 20% in N balance between diets can be significantly detected

Some Conclusions Digestion and N Balance

- Strict attention to detail and protocols critical to success
- Assessment of impact of specific procedures
 - Number of days of collection
 - conclusions similar for N balance at URead (lactating cows)
 - Variation in intake a key factor cow comfort very important
 - 7 to 10 days improved accuracy at INRAE (growing bulls)
 - Feed and faecal handling
 - Immediate analysis the 'gold standard' but frozen bulk samples acceptable
 - Faecal preservatives acid ethanol decreased N concentration
 - Losses of ammonia minimized with attention to detail
 - Urine handling acidification and mixing critical
 - Lower urine N concentrations overall for frozen bulk samples
 - 7.17 vs 6.75 and 10.39 vs 9.97 g/kg for low and high CP diets, respectively
 - Method of sample drying and grinding for N analysis avoid drying!
 - Chop if needed using dry ice

Meta-Analysis of Methane Emission Measurements

For chamber measurements variation due to site relatively minor after adjustment for other sources of variation (e.g. trial, diet composition)

SmartCow - WP 5 Ring Test of Chamber Methane Recovery by NPL

SmartCow – WP 5 *CH4 Recovery - Chamber Efficiencies*

Ring-test	Comparability / % (<i>k</i> =2, 95% confidence)
UK (2012)	25.7
SmartCow	6.2

- 6 instances (out of 17) where variance > +/-3%
- Guidance on identifying sources of variation (e.g. flow meter calibration, leaks)
- Recommeded that ring tests be conducted periodically to validate local recovery tests

SmartCow – WP 5 Implications

Digestion and N balance measurements

- Sources of variation at each installation evaluated and addressed
- Improvements in 'standard' methods achieved through self assessment and critical evaluation
- Human behaviour critical strict attention to detail, training and engagement of research staff, students, etc.
- Cow comfort and acclimation to equipment important
- Accurate measurement of intake and diet composition critical!

Chamber measurements of methane emission

- Recovery tests show good comparability across installations
- Potential sources of variation highlighted

Improvements and standardization achieved at SmartCow installations an exemplar for other researchers

SmartCow – WP 5 Future Prospects

Digestion and N balance measurements

- Still need to address questions raised
 - Effects of freezing on urine N concentration (Uread results)
 - Effects of method of analysis on N concentration of feeds (WU results)
- Sharing of best practice
 - Workshops for training of staff and early career researchers
- Development and adoption of proxy/biomarker estimates

Chamber measurements of methane emission

- Establishment of user group for sharing equipment, training, etc.
 - Future ring-tests for updating validation of facility efficiencies
 - Workshops for training of staff and early career researchers
- Development and adoption of proxy/biomarker estimates

Thank you for your attention

- 11 major RIs distributed in 7 EU countries
- 12 locations, which include 18 installations
- 2500 dairy and 1000 beef cows
- **Networking of RIs** to inventorize resources, harmonize procedures, and share data
- **Joint research activities** to improve experimental methods and phenotyping capability
- Interaction with stakeholders to stay in line with industry needs and improve dissemination

http://www.smartcow.eu/stakeholders/

TRAINING PROGRAM

For Scientists, Technicians, Stakeholders, PhD students

- Face-to-face training courses
- Free web-conferences
- One-day study tours in 4 different countries

http://www.smartcow.eu/resources/training/

TRANSNATIONAL ACCESS CALLS

Offers external users (academic and industry) free access to SmartCow RIs

- 30 projects during the 4 years of SmartCow
- Access to around 10,000 cow-weeks

http://www.smartcow.eu/calls/

