

SmartCow project

Ethics in experiments on animals

Adjustment of animal numbers in experimentation

Question: Why is this important?

Patrick Gasqui

Tuesday September 22, 2020

INRAE – VetAgro Sup, Unité Mixte de Recherches d'Epidémiologie des maladies animales et zoonotique (EPIA), Centre de recherche de Clermont Auvergne-Rhône-Alpes, Département de Santé Animale (SA)

"Classical" statistical theory for using a test:

the initial framework of this presentation ...

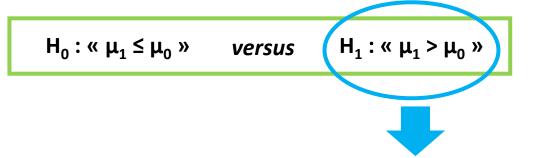
1 - as part of a one-sided hypothesis test:

$$H_0: \ll \mu_1 \le \mu_0 \gg versus \qquad H_1: \ll \mu_1 > \mu_0 \gg \mu_0$$

"Classical" statistical theory for using a test:

the initial framework of this presentation ...

1 - as part of a one-sided hypothesis test:

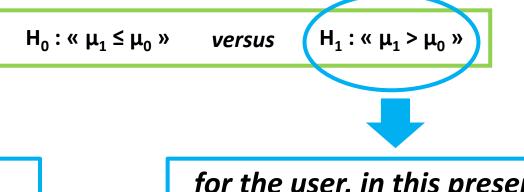


for the user, in this presentation the hypothesis (H_1) is the hypothesis of interest

"Classical" statistical theory for using a test:

the initial framework of this presentation ...

1 - as part of a one-sided hypothesis test:



the user therefore wants to highlight a difference in means: \ll delta = μ_1 - μ_0 »

for the user, in this presentation the hypothesis (H_1) is the hypothesis of interest

the initial framework of this presentation ...

2 - for a random variable of interest « Y » which follows a Gaussian distribution with standard deviation « σ_v »

using a statistic of test: « T » whose law (distribution) is known under H₀

and whose value is « T_{obs} » after the measurement results of a sample size « N »

example statistic « T »: the empirical mean

$$\overline{Y_N} = \frac{1}{N} \cdot \sum_{i=1}^{i=N} Y_i$$

the initial framework of this presentation ...

2 - for a random variable of interest « Y » which follows a Gaussian distribution with standard deviation « σ_{Y} »

the standard deviation « $\sigma_{\rm Y}$ » is the precision of the studied variable « Y »

using a statistic of test: « T » whose law (distribution) is known under H₀

and whose value is « T_{obs} » after the measurement results of a sample size « N »

example statistic « T »: the empirical mean

$$\overline{Y_N} = \frac{1}{N} \cdot \sum_{i=1}^{i=N} Y_i$$

the initial framework of this presentation ...

2 - for a random variable of interest « Y » which follows a Gaussian distribution with standard deviation « σ_Y » using a statistic of test: « T » whose law (distribution) is known under H₀

and whose value is « T_{obs} » after the measurement results of a sample size « N »

example statistic « T »: the empirical mean

$$\overline{Y_N} = \frac{1}{N} \cdot \sum_{i=1}^{i=N} Y_i$$

the standard deviation « $\sigma_{\rm Y}$ » is the precision of the studied variable « Y »

this precision « $\sigma_{\rm Y}$ » is important given that we want to be able to highlight a difference between two means « delta = $\mu 1$ - $\mu 0$ » with the variable « Y »

the initial framework of this presentation ...

2 - for a random variable of interest « Y » which follows a Gaussian distribution with standard deviation « σ_v »

using a statistic of test: « T »
whose law (distribution) is known under H₀

and whose values is « T_{obs} » after
the measurement resue of a sample size « N »

example statistic « T »: the empirical mean

$$\overline{Y_N} = \frac{1}{N} \cdot \sum_{i=1}^{i=N} Y_i$$

an example
is the student test statistic
when « Y » follows
a Gaussian distribution

the initial framework of this presentation ...

3 - after choosing:

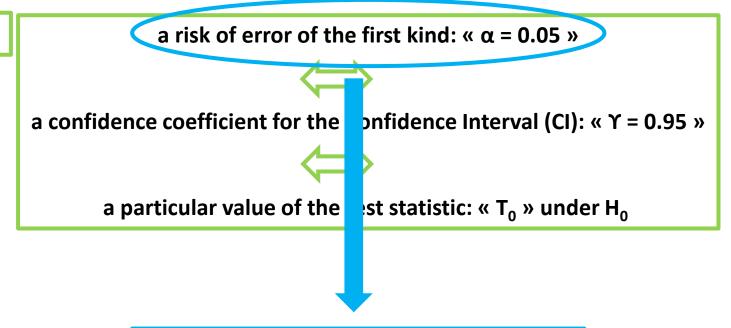
a risk of error of the first kind: « α = 0.05 »

a confidence coefficient for the Confidence Interval (CI): « Υ = 0.95 »

a particular value of the test statistic: « T₀ » under H₀

the initial framework of this presentation ...

3 - after choosing:



« α = 0.05 » is the risk of error conventionally taken in practice

4 - we are led to take a "decision" from the result « Tobs » obtained on the sample :

either: « we cannot reject H_0 » which means: « $T_{obs} \le T_0$ » or « Pvalue $\ge \alpha$ »

either: « we accept H_1 » which means: « $T_{obs} > T_0$ » or « Pvalue < α »

without knowing the « reality » ...

	« reality » H ₀	« reality » H ₁
« decision » H ₀	« Y = 0.95 »	?
« decision » H ₁	$\ll \alpha = 0.05 $ »	?

α = error of the first kind "controlled *a priori*"

it is the user who chooses its value a priori

$$\alpha = 1 - \gamma$$

α is the probability of concluding that there is a difference when there is none ["notion of false positive"]

4 - we are led to take a "decision" from the result « Tobs » obtained on the sample :

either: « we cannot reject H_0 » which means: « $T_{obs} \le T_0$ » or « Pvalue $\ge \alpha$ »

either: « we accept H_1 » which means: « $T_{obs} > T_0$ » or « Pvalue < α »

without knowing the « reality » ...

	« reality » H ₀	« reality » H ₁
« decision » H ₀	« Y = 0.95 »	?
« decision » H ₁	$\ll \alpha = 0.05 $ »	?

$$\alpha = 1 - \gamma$$

α = error of the first kind "controlled *a priori*"

« α » and « γ » with the concept of confidence interval (CI) :

 Υ = « probability that the CI:] - ∞ , T₀] contains the observed value: T_{obs} under H₀ »

 α = « probability that the CI:] - ∞ , T₀] no contains the observed value: T_{obs} under H₀ »

it is the notion of equivalence between doing a test or calculating a confidence interval

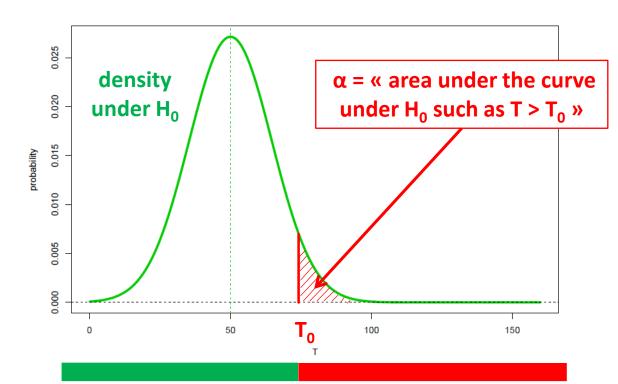
We can visualize this with the density distribution of "T" under H_0 with « N=6 » and « $\sigma_Y=36$ »

	« reality » H ₀	« reality » H ₁
« decision » H ₀	« Υ = 0.95 »	?
« decision » H ₁	$\alpha = 0.05$ »	?

we are led to take a "decision"

from the result « T_{obs} »

obtained on the sample:



$$if \ll T_{obs} \leq T_0$$
 $if \ll T_{obs} > T_0$ $if \ll T_0$ if

therefore, it is classically the user who chooses a priori:

- ✓ the hypotheses to be tested: H_0 : « $μ_1 ≤ μ_0$ » versus H_1 : « $μ_1 > μ_0$ »
- ✓ the test and therefore the test statistic "T" under H₀
- √ a sample size « N »
- \checkmark a risk of error of the first kind: « α = 0.05 », therefore the confidence coefficient « γ = 1 α » and therefore a particular value of the test statistic: « T_0 » under H_0 .

from the observation
« T_{obs} » obtained
on the sample
the user has his result

Ok, but where is the problem?

therefore, it is classically the user who chooses a priori:

- ✓ the hypotheses to be tested: H_0 : « $μ_1 ≤ μ_0$ » versus H_1 : « $μ_1 > μ_0$ »
- ✓ the test and therefore the test statistic "T" under H₀
- √ a sample size « N »
- \checkmark a risk of error of the first kind: « α = 0.05 », therefore the confidence coefficient « γ = 1 α » and therefore a particular value of the test statistic: « T_0 » under H_0 .

from the observation
« T_{obs} » obtained
on the sample
the user has his result

Ok, but where is the problem?

The problem is that you have to define the "sensitivity" of a test, that is, its ability to identify a difference when it exists.

Note: We have the same problem when we take a measurement with a device. We try to know its sensitivity before using it.

5 – on the other hand, we have "no" a priori information on "reality" under H_1 , while we also have a possible error (called « β »), either that of « deciding H_0 » while the « reality is H_1 ».

	« reality » H ₀	« reality » H ₁
« decision » H ₀	« Υ = 0.95 »	«β»?
« decision » H ₁	$\ll \alpha = 0.05 $ »	«1-β»?

β is the probability of concluding that there is no difference when there is one ["notion of false negative"]

 β = second kind error "not known *a priori*" because in general we do not know the distribution of T under H₁ and because we do not know the value of « μ_1 »

1 - β = power of the test = « ability of the test to detect a difference when it exists »

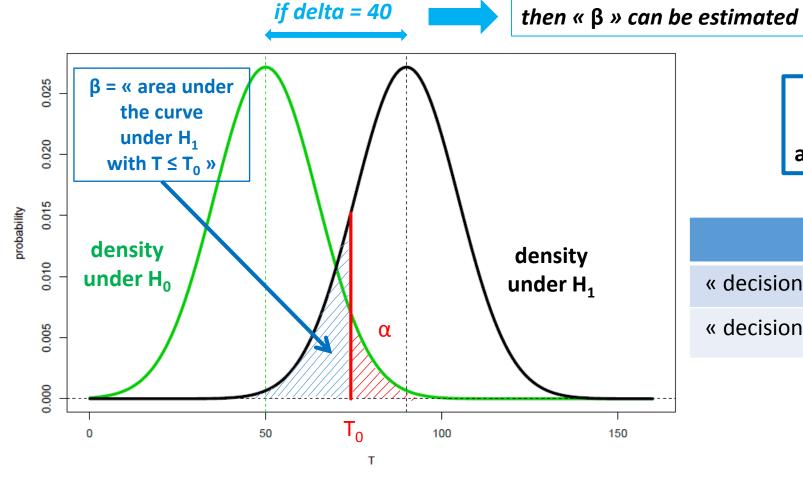
The « power of the test » is ultimately the "sensitivity" of the statistical test to be able to "detect" a difference.

It is important that the power of the test is as great as possible

example of density distribution of statistical « T » under H₀ and under H₁

with: delta = $\mu_1 - \mu_0$

with N = 6 and $\sigma_{\rm Y}$ = 36



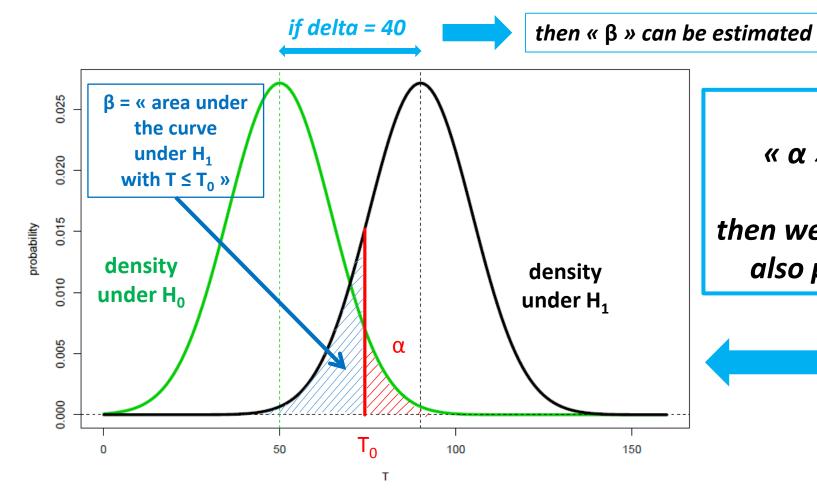
If "delta" is fixed, then we can estimate "β" and also plot the distribution under H₁.

	« reality » H ₀	« reality » H ₁
« decision » H ₀	« Y = 0.95 »	« β ≈ 0.14 »
« decision » H ₁	$\ll \alpha = 0.05 $ »	$\ll 1 - \beta \approx 0.86 $ »

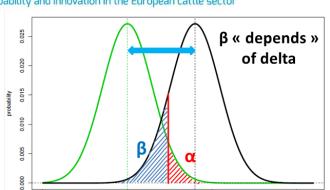
example of density distribution of statistical « T » under H₀ and under H₁

with: delta = $\mu_1 - \mu_0$

with N = 6 and $\sigma_{\rm Y}$ = 36



if the parameters: « α », « delta », « N » and « σ_{γ} » are fixed a priori, then we can estimate « β », « 1- β » and also plot the distribution under H1.



if delta = 40

with N = 6

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	«β≈ 0.14»
H ₁	« α = 0.05 »	$\ll 1 - \beta \approx 0.86$ »

with N = 6

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	« β ≈ 0.04 »
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.96$ »

if delta = 60

with N = 6

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	«β≈0.01»
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.99 $ »

with delta = μ_1 - μ_0 and σ_Y = 36

For a fixed sample size "N", as "delta" increases,

the second kind error " β " decreases and the power of the test"1- β " increases

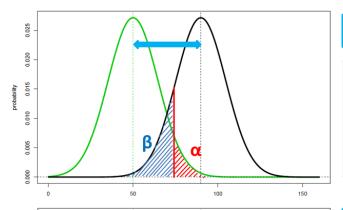
If we want a power of the test at least 0.99, with a sample size "N = 6", we can only identify that a difference in means "delta" greater than 60.

But we want to be able to identify a difference in averages of the order of 40.

How do we do this?

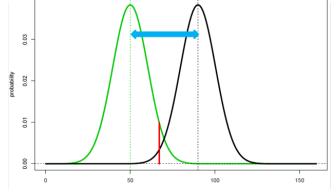
so if we want to keep a good ability to detect a « given difference », and so if we want to have a « minimum sensitivity a priori », we have two main complementary solutions:

with a « minimum delta » of 40



with N = 6

	« reality » H ₀	« reality » H ₁
H ₀	« Υ = 0.95 »	« β ≈ 0.141 »
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.859 $ »



with N = 12

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	« β ≈ 0.014 »
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.986$ »

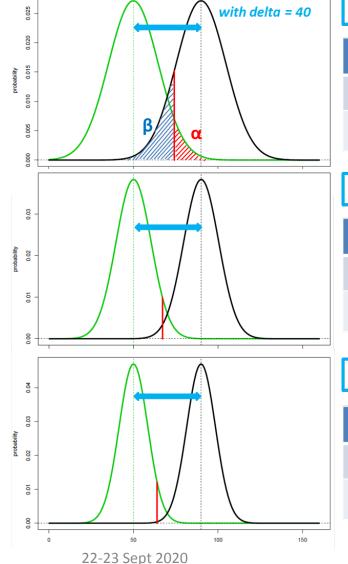
1st solution :
we « increase »
the size « N » of the sample

$$Var(\overline{Y}) = \frac{1}{N} \cdot Var(Y) = \frac{1}{N} \cdot \sigma_Y^2$$

For a fixed "minimum delta" as sample size "N" increases, the second kind error "β" decreases and the power of the test"1-β" increases

If we want a power of the test at least 0.986, and

identify a difference in means "delta = 40", We just need to take a sample size "N = 12".



with N = 6

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	« β ≈ 0.141 »
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.859 $ »

with N = 12

	« reality » H ₀	« reality » H ₁
H _o	« Y = 0.95 »	« β ≈ 0.014»
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.986 $ »

with N = 18

	« reality » H _o	« reality » H ₁
H _o	« Y = 0.95 »	«β≈0.001»
H_1	« α = 0.05 »	$\ll 1 - \beta \approx 0.999$ »

For a fixed "minimum delta" as sample size "N" increases, the second kind error " β " decreases and the power of the test"1- β " increases

$$Var(\overline{Y}) = \frac{1}{N} \cdot Var(Y) = \frac{1}{N} \cdot \sigma_Y^2$$

In fact, the decrease in "β" and the increase in the power of the test "1-β" are very rapid [in (1/N)], as the sample size "N" increases.

formula for N_{min}

 $\mathbf{u}_{\mathbf{p}}$ is the quantile of probability " \mathbf{p} " for the Gaussian distribution N(0,1).

for
$$\alpha$$
 = 0.05 we have $u_{1-\alpha}$ = 1.644854 and for β = 0.01 or (1- β) = 0.99 we have u_{β} = -2.326348

The minimum « N » size allowing the desired « precision », ie « $(1-\beta) \ge 0.99$ » is such that :

$$N \geq \left[\frac{\sigma_{Y} \cdot (u_{1-\alpha} - u_{\beta})}{delta} \right]^{2}$$

with « delta = μ_1 - μ_0 » for the minimum detectable deviation sought and « σ_v » for the standard deviation of the Gaussian law of the studied and measured variable Y.

For the previous example we had \ll delta = 40 \gg and \ll $\sigma_{\rm Y}$ = 36 \gg which gives \ll N \geq 12.77406 \gg or \ll N_{min} = 13 \gg for a power \ll (1- β) \geq 0.99 \gg .

formula for N_{min}

 $\mathbf{u}_{\mathbf{p}}$ is the quantile of probability " \mathbf{p} " for the Gaussian distribution N(0,1).

for
$$\alpha = 0.05$$
 we have $u_{1-\alpha} = 1.644854$

and for
$$\beta = 0.01$$
 or $(1-\beta) = 0.99$ we have $u_{\beta} = -2.326348$

The minimum « N » size allowing the desired « precision », ie « $(1-\beta) \ge 0.99$ » is such that :

$$N \geq \left[\frac{\sigma_{Y} \cdot (u_{1-\alpha} - u_{\beta})}{delta}\right]^{2}$$
 (and the parameters : α and α and α are well linked.

with « delta = μ_1 - μ_0 » for the minimum detectable deviation sought and « σ_v » for the standard deviation of the Gaussian law of the studied and measured variable Y.

formula for N_{min}

 $\mathbf{u}_{\mathbf{p}}$ is the quantile of probability " \mathbf{p} " for the Gaussian distribution N(0,1).

for $\alpha = 0.05$ we have $u_{1-\alpha} = 1.644854$

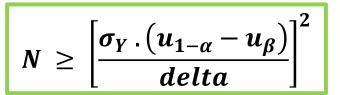
and for $\beta = 0.01$ or $(1-\beta) = 0.99$ we have $u_{\beta} = -2.326348$

The minimum « N » size allowing the desired « precision », ie « $(1-\beta) \ge 0.99$ » is such that :

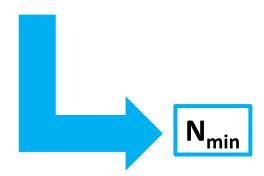
$$N \geq \left[rac{\sigma_{Y} \cdot (u_{1-lpha} - u_{eta})}{delta}
ight]^{2}$$

with « delta = μ_1 - μ_0 » for the minimum detectable deviation sought and « σ_v » for the standard deviation of the Gaussian law of the studied and measured variable Y.

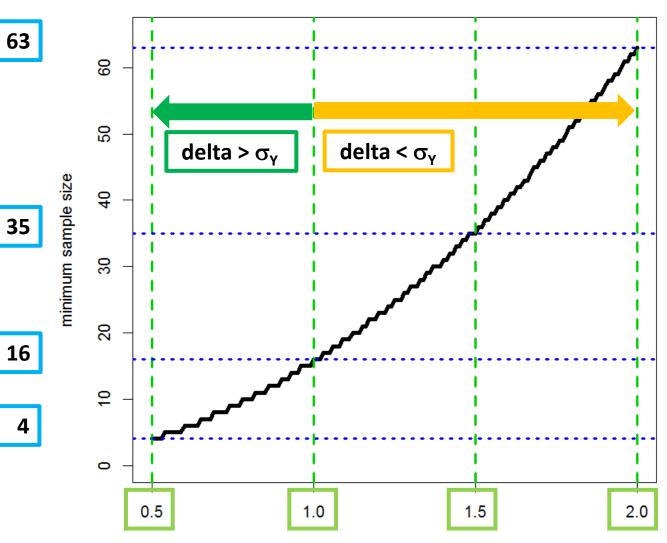
Note: as long as « delta > $\sigma_{\rm Y}$ » the minimum number will remain « reasonable ». On the other hand in the opposite case, the minimum workforce may quickly « explode » because we will be in the case where we are looking for a « sensitivity » lower than the « measurement accuracy ».



for $\alpha = 0.05$ and for $\beta = 0.01$ or $(1-\beta) = 0.99$



« N_{min} » depends on the ratio « σ_{Y} / delta »



 $rac{\sigma_{_Y}}{delta}$

ratio: standard deviation on delta

$$N \geq \left[\frac{\sigma_{Y} \cdot (u_{1-\alpha} - u_{\beta})}{delta} \right]^{2}$$

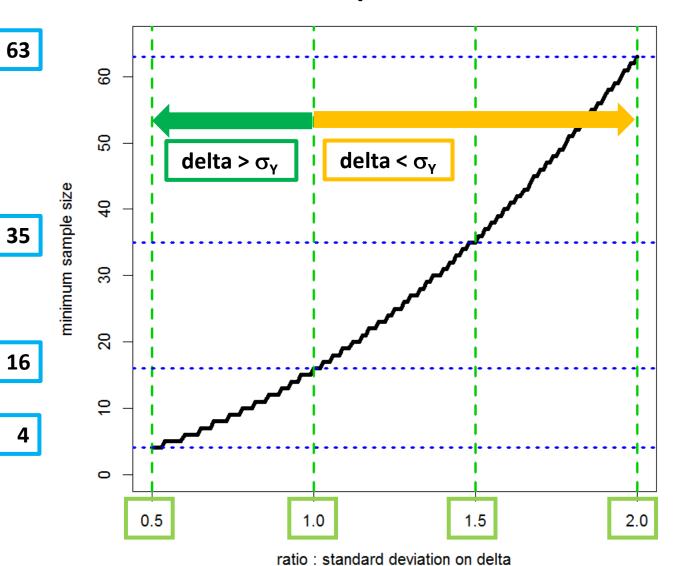
for $\alpha = 0.05$ and for $\beta = 0.01$ or $(1-\beta) = 0.99$

 N_{\min}

for a given sample size N a priori we can "correctly" identify a difference of at least

$$delta \geq \frac{\sigma_{Y}.\left(u_{1-\alpha}-u_{\beta}\right)}{\sqrt{N}}$$

for example, with N = 6 we have delta $\geq 1.6 \sigma_Y$ or $(\sigma_Y / \text{delta}) \leq 0.62$



 $\sigma_{_{Y}}$

delta

so with the 1st solution:

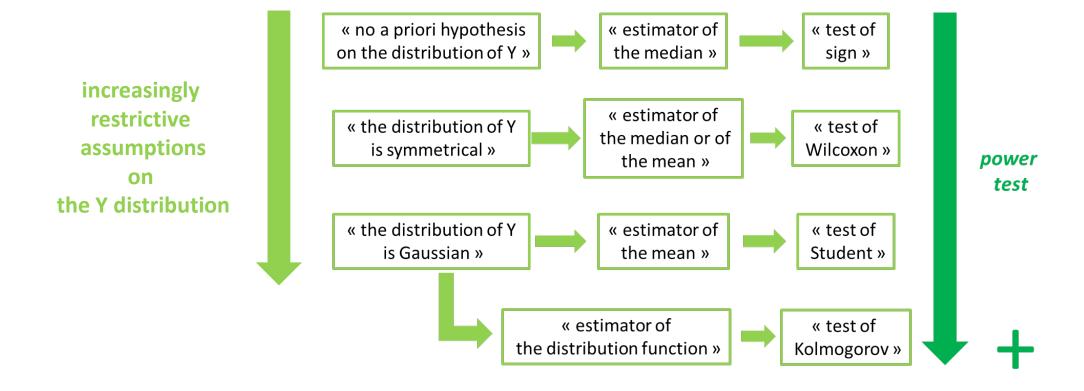
when we "increase" the size "N" of the sample the variance of the estimator "decreases" — the risk of error β "decreases" and the power of the test "increases".

$$Var(\overline{Y}) = \frac{1}{N} \cdot Var(Y) = \frac{1}{N} \cdot \sigma_Y^2$$

therefore by choosing "N" according to the "minimum difference" (or "delta")
that we want to be able to highlight *a priori*,
we "select" *a priori* the "power of the test" that we want,
and therefore the "expected sensitivity" of the test is thus determined.

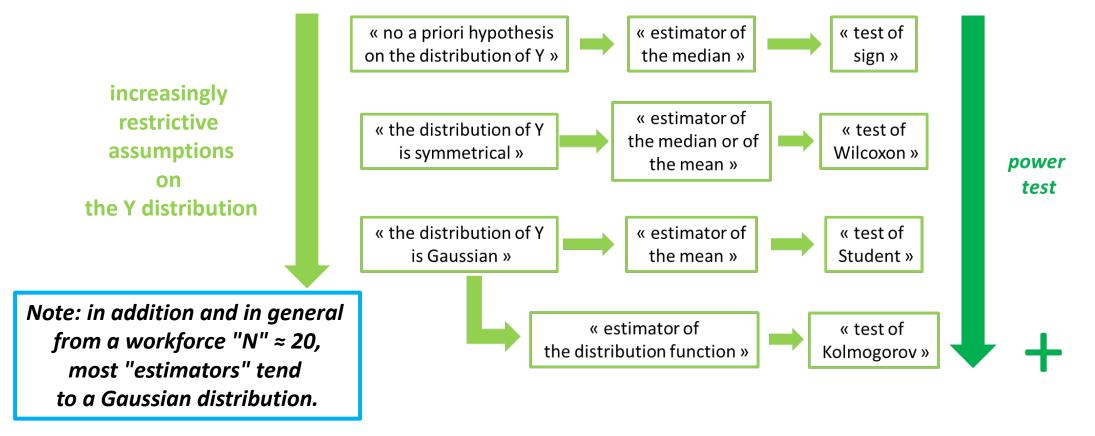
2nd complementary solution: choose the most suitable test to the assumptions that can be made a priori on the distribution of the measured variable "Y".

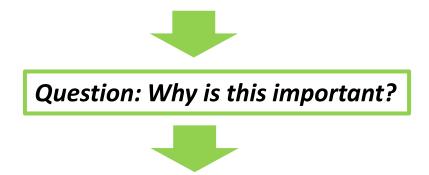
for the same value of "delta" a priori, and the same sample size "N" a priori



2nd complementary solution: choose the most suitable test to the assumptions that can be made a priori on the distribution of the measured variable "Y".

for the same value of "delta" a priori, and the same sample size "N" a priori





Answer: choose the size of the sample N a priori allows to "calibrate" a priori the "desired sensitivity" of the statistical test to be used taking into account a priori knowledge such as a minimum standard deviation σ_{γ}

the smaller $\sigma_{\rm Y}$ the smaller the sample size N required

"a statistician is not a magician"

Thank you for your attention.