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EXECUTIVE SUMMARY 

 
 

Background 
Deliverable D7.3 detailed descriptors to be calculated from activity data and 
Deliverable D7.4 applied these descriptors to predict the health status of cows.  

Objectives 
In the present deliverable, we refine the calculation of activity descriptors and 
extend the use of descriptors to predict animal health, stress, and efficiency. 

Methods 

The relationship between the circadian rhythm of dairy cow activity is further 
explored by Machine Learning. The relationship between feed efficiency and 
measures of feeding behaviour (and other sensor-based behavioural variables) 
is addressed by statistical analyses (univariate regression and multiple stepwise 
regression). 

Results  
& implications  

Activity patterns can be used to distinguish cow states. Nearly 100 % days with no 
event are classified as normal. The proportion of correct classification of oestrus, 
calving, diseases, mastitis, acidosis, lameness ranges between 63 and 88%. If the 
method was implemented on a farm, very few false alarms would be received by 
a farmer, alarms could be refined with indication of the most probable cow state. 

Feed efficiency can best be predicted from measures of feeding behaviour. When 
added to measures of eating time, sensor-based parameters related to activity do 
not significantly contribute to the prediction of feed efficiency. There was no 
consistency between countries (Spain vs. the Netherlands) in the type of model 
that was obtained when predicting feed efficiency from measures of eating time 
and sensor-based parameters related to activity. So at present no common 
formula can be proposed. 
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1 Introduction  

The previous deliverable (D7.4) was focused on the relationship between sensor-based behavioural 
variables and measures of dairy cow health. More specifically, we established the extent to which 

postpartum health of dairy cows can be predicted based on their behaviour (eating, ruminating, 

standing, lying) before calving, and we studied the relationship between drinking behaviour and 

mastitis. Finally, results were provided on the modification of the circadian rhythm of dairy cow activity 

when the animals were stressed or diseased, regardless of the disease. 

In the present deliverable has two main objectives: 

- The relationship between cow health / stress state and dairy cow activity will be further 
explored; in particular, now a distinction was made between different disorders and events. 

- The relationship between feed efficiency and measures of feeding behaviour, and between a 
wider range of sensor-based behavioural variables and feed efficiency will be addressed 

- If strong relationships are obtained, the algorithms proposed can be implemented in Precision 
Livestock Farming tools 1- to monitor closely animals and take operational decisions (daily 
management) or 2- to phenotype animals – i.e. to characterise their potential – with a view to 
help strategic decisions. 

2 Results 

2.1 Refinement of calculation of activity descriptors 

There is evidence that animals that feel unsafe or uncomfortable change more often of activity. For 

instance, when turned from pasture to indoors conditions, animals need to get used to their new 

environment; they may fraction their activity in small bouts, changing often from one activity to another 

(Veissier et al 1989). Similarly, sheep suffering from acidosis often change their posture from lying to 

standing (Commun et al 2012) as if they don't feel comfortable in either of these postures. By contrast 

the changing of posture may be difficult is some settings, resulting in longer bouts, or an activity can be 

prevented resulting in longer bouts of another; e.g. in poorly designed cubicles  cows have difficulties 

standing in the cubicles and have longer lying bouts (Veissier et al 2004). 

We define a new indicator on the fragmentation of activity. It measures the extent to which  the activity 

of an animal is distributed in small bouts of given activities. 

The fractioning of the activity is calculated as the number of bouts of a given activity during the day or 

whatever the activity. For instance, using scan sampling with one scan every 10 min, the following 

activities can be recorded for a given animal: Lying, standing, walking, eating. In the example below, the 

number of  bouts during the for 6 h of observations are: lying, 2; standing immobile, 1; walking, 2; Eating, 

1. The total l number of activity bouts is  6. 

Scan Activity 

1 Lying 

2 Lying 

3 Lying 
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4 Lying 

5 Walking 

6 Walking 

7 Eating 

8 Eating 

9 Eating 

10 Eating 

11 Eating 

12 Eating 

13 Eating 

14 Eating 

15 Eating 

16 Eating 

17 Eating 

18 Eating 

19 Eating 

20 Eating 

21 Walking 

22 Standing immobile 

23 Standing immobile 

24 Standing immobile 

25 Standing immobile 

26 Lying 

27 Lying 

28 Lying 

29 Lying 

30 Lying 

31 Lying 

32 Lying 

33 Lying 

34 Lying 

35 Lying 

36 Lying 

  
 

For such calculations, the activities considered should be not too detailed. For instance, if one 

distinguishes between lying with different head, leg or body positions there will be many small activities 

whereas during all these activities the animal is resting so the biological significance is the same. 

There are also edge effects: in the example above, the number of lying bouts per 6 h of observation may 

be only 1 on average over consecutive 6 h time series, -and not 2 as calculated -  because the activity 

"lying" may continue from one series to the next. To reduce this problem, it is recommended to calculate 

bouts on long time series, at least 1 day long. 
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2.2 Activity and health 

Improvement of the FBAT method using fuzzy logic 

We suspect that the behaviour of a cow starts to be modified 1-2 days before clinical signs are detected 

and is still modified for few days thereafter. The probability for showing sickness behaviour should 

therefore increase for some days before clinical signs are obvious then should decrease when animals 

recover. We applied fuzzy logic to label days according to their closeness with the day clinical signs are 

detected. We then applied the FBAT method (presented in D7.4) using such fuzzy labels. Briefly FBAT 

models the circadian activity according to a mere sinusoid (wavelength = 24 h).  If the Euclidian distance 

between two successive models exceeds a given threshold then FBAT considers that the rhythm has 

changed. By using fuzzy labels, we reduced the proportion of false detection: in the large dataset on 

commercial farms (100000 cow*days) only 5% (instead of 20% with the initial FBAT method) of normal 

days were detected abnormal. 

Distinction between disorders (monitoring) 

With the FBAT method we can detect changes in activity rhythm related to diseases, stress, or 

reproductive events (calving, oestrus). But we are not able to distinguish between these events.  

We tried to adjust the threshold of FBAT to specific events with a view to distinguish them. We failed to 

find satisfactory results with this approach. 

We then considered a series of statistical and time series descriptors that we calculated on each 

each*day: 

- Autocorrelations  
- Mean 
- Standard deviation 
- Asymetry 
- Kurtosis 
- Sum 
- Minimum & maximum 
- Quadratic mean 
- Quantiles (10,25,50,75,90%) 
- Root Mean Square of successive difference (RMSSD) 

 

At first we used 32 descriptors (Table 1). We used Machine Learning – here Random Forest – to classify 

cow*days according to these descriptors. A first Random Forest was performed on all descriptors but 

one (due to a correlation of 0.99 with another descriptor). A second Random Forest was performed on 

21 descriptors, the 10 descriptors with a weight lower than 3% having been removed. With these 21 

descriptors, we were able to satisfactorily discriminate control days from days corresponding to a 

specific cow state (calving, oestrus, mastitis, lameness, acidosis, other diseases, accidents, stress due to 

mixing or to disturbances) (Table 2). On average on all datasets used more than 95 % days with no event 

were classified as normal, which implies that very few false alarms would be received by a farmer if the 

method was implemented on a farm. The proportion of correct classification of 24 h time series when 

an oestrus, calving, diseases, mastitis, acidosis, lameness occurs range between few percentages to over 

60%. Actually, the events that are not correctly classified are very often classified as normal days (Table 

3). This has to do with the fact that for each event an episode of several days before and after the event 

is labelled as abnormal (usually 2 days before, the day the event is detected, and the day after). The 

behaviour of the animal is not necessarily modified during all these days. Actually, there was 91%–100% 
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probability of successfully detecting at least one 24-h series around a disease, oestrus or calving. The 

detection often occurred 1–2 days before the day caretakers noticed the event. 

For this work we used data previously used to develop the FBAT method (see D7.4) and a dataset from IRTA. 

The former were obtained with a Real Time Locating System and the latter with accelerometer, thus 

suggesting that the method is not bound to a given sensor. 

 

 

 

 

Table 1. The 32 statistical features describing 24-h time series of cows' activity level (referred to 

'activity' in the table) with their average weight over the five datasets in the two random forest (RF) 

classifications descriptors. 

Definition Name 

Weight 

(%) 

RF 

1 

RF 

2 

Minimum activity among the 24 h  Minimum 1.71 - 

Maximum activity among the 24 h Maximum 
5.92 7.71 

Mean activity over the 24 h Mean 3.38 4.40 

Root Mean Square, i.e. the square root of the mean of squared activities across the 24 

h 

RMS 

3.13 4.14 

Standard deviation of the activity over the 24 h STD 3.10 4.12 

Mean of the standard deviation of the 6 non-overlapping 6 h windows composing the 

24 h 

MeanSTD6

h 2.34 - 

Standard deviation of the mean of the 6 non-overlapping 6 h windows composing the 

24 h 

STDMean6

h 2.03 - 

Standard deviation of the difference between the activity of any hour and the activity 

of the next hour 

STDSD 

- - 

Root mean square of successive differences, i.e. the differences between the activity at 

an hour and the activity at the next hour 

RMSSD 

3.40 4.49 

Most common value among the 24 h Mode 
1.74 - 

Quantiles 10 and 90%, calculated from the values which  divide the hours into 10 

equal groups from lower to higher activity. Q10, maximum values of the lower group; 

Q90, maximum value of the last but one higher group  

Q10 3.12 4.33 

Q90  

4.48 5.88 

Quantiles 25, 50 and 75%, calculated from the values which divide the hours into 4 

equal groups from lower to higher activity. Q25, maximum values of the lower group; 

Q50, median; Q75, maximum value of the last but one higher group 

Q25 
3.52 4.65 

Q50 3.71 4.86 

Q75 
4.04 5.36 

Symmetry of the distribution of activity across the 24 h Skewness 3.41 4.43 

'Tailedness' of the distribution of activity across the 24 h Kurtosis 
3.55 4.57 

Autocorr1 3.16 4.17 
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Autocorrelation, i.e. the correlation between the activity at any Hour h and the activity 

at Hour h + d, where d represents a fixed interval (1 h, 2 h, … 11 h) 

Autocorr2 3.16 4.33 

Autocorr3 
3.20 4.25 

Autocorr4 3.21 4.36 

Autocorr5 
3.12 4.23 

Autocorr6 2.95 - 

Autocorr7 
2.89 - 

Autocorr8 2.87 - 

Autocorr9 
2.79 - 

Autocorr10 2.84 - 

Autocorr11 
2.82 - 

Harmonics 1, 2, 3, 4 in a Fourier Transform 

h1 3.57 4.87 

h2 
3.64 4.97 

h3 3.69 5.01 

h4 
3.51 4.87 

 

Table 2. 1000-trees Random Forest algorithm precision for each event with the last 10 descriptors as 

classification attributes. Results presented are averaged over 5 iterations, with train sample being each 

time a random subset of 2/3 of the original dataset) and test sample being the remaining 1/3. 

    Dataset 

Cow state   1 2 3 4 5 

Control days 
Headcount 26110 5863 7755 1582107 11650 

% detected 100.0% 94.4% 100.0% 99.9% 99.8% 

Oestrus 
Headcount 758 140 551 13294 421 

% detected 37.0% 14.9% 53.7% 2.4% 35.9% 

Calving 
Headcount 251 0 0 12812 0 

% detected 22.9% - - 38.0% - 

Lameness 
Headcount 109 491 0 8340 349 

% detected 38.9% 18.9% - 2.6% 39.4% 

Mastitis 
Headcount 161 90 0 2423 180 

% detected 31.5% 2.9% - 3.1% 33.8% 

Acidosis 
Headcount 0 3156 0 0 2495 

% detected - 32.7% - - 54.2% 

LPS 
Headcount 343 0 0 0 0 

% detected 22.6% - - - - 

Accidents 
Headcount 0 0 0 1236 0 

% detected - - - 5.0% - 

Other disease 
Headcount 242 276 0 4736 33 

% detected 36.4% 14.8% - 4.6% 24.3% 

Mixing 
Headcount 973 0 0 0 150 

% detected 32.8% - - - 19.1% 

Disturbance Headcount 1432 6195 0 273439 191 
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% detected 31.5% 63.6% - 2.1% 15.3% 
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Table 3. Confusion matrix from one Dataset 1 
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Control 100 0 0 0 0 0 0 0   

Oestrus 61 37 0 0 0 0 0 1 100 63 

Calving 24 0 23 0 0 0 44 9 100 97 

Lameness 64 0 0 36 0 0 0 0 100 96 

Mastitis 36 0 0 0 39 0 18 7 100 98 

Other disease 48 0 0 0 0 36 16 0 100 95 

Mixing 46 0 11 0 3 4 33 3 92  

Disturbance 55 1 2 0 1 0 2 31 11   

 

 

2.3 Feeding behaviour pattern 

We question if the feeding behaviour of a cow has an impact on its feed efficiency. More specifically we 

question if the time spent taking food vs. chewing the food by a cow during  meal impacts on its feed 

efficiency.  We looked at ways to identify this behavioural pattern. 

The BioControl troughs monitor feed bin weight with an 1 g resolution and a 2 s sampling rate. Each 

cow is detected in the bin using its RFID tag and the raw weighting signal of the visit is collected in a SQL 

data base synchronized on the universal time. On the 10th june 2019, in one pen of the INRAE 

experimental farm Herbipole barn, 390 visits were collected from 12 lactating cows (6 Holstein, 6 

Montbeliarde) having free-access to 12 BioControl troughs (6 with hay, 6 with maize silage). At the same 

time, two cameras (Axis, MediaRecorder 4, Noldus), placed in front of the bin, recorded cow’s behaviour. 

Trained observers labelled the videos (gold standard measurement of head down (the cow takes a bite) 

or head up (the cow chews the food)) using the The Observer software (Noldus). A signal-processing 

algorithm was developed to automatically (1) access the data base from BioControl, (2) process the raw 

signal of each visit and (3) compare the results to the gold standard (Figure 1 below). 

The algorithm consists in (1) re-sampling, synchronising and filtering noise from high and from low 

frequencies to keep only signal variation due to cow having head down in the bin, (2) standardizing the 

weigh variation to make all visits comparable, (3) detecting all local maxima in the signal, (4) 

thresholding the filtered signal to obtained a binary signal directly comparable to the gold standard at 

each second which allows the calculation of the Jaccard similarity index. From both signals (processed 
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and gold standard), the frequency head down (predicted from Biocontrol and observed from videos) 

and the duration head down (expressed as % of the visit duration) were also calculated. 

The 390 visits (mean duration = 9min 15s, Min=20s, Max=54min) were processed according to 27 

combinations of the different parameters (filter size, threshold level). The higher Jaccard index (0.57) 

was obtained with the following settings: 

- Re-sampling every second 
- Synchronisation: delay of 13 s between Biocontrol and video data 
- High frequency filter : data obtained on sequences of 4 s are averaged 
- Low frequency filter : The minimum obtained in a &5 s sequence is deduced from the raw data 

Then within a meal, we consider that there is a significant increase in the weight of the trough when the 

weight increases by more than 3% of the maximum weight during the meal. 

With such settings, the method overestimates by 20% both the frequency and the duration. The 

coefficient of correlation r² between observed and predicted (n=390) are low, for the frequency (0.28) 

and the duration (0.24). Nevertheless once averaged per animal, the r² was increased for the frequency 

(0.74, N=12) but stay low for duration (0.09, N=12). 

 

Figure 1. Output of the algorithm used to compare video observations and the variations in feed bin 

weight. Top left, setting of parameters. Bottom left, dataset. Top right, visualisation of raw data (yellow, 

feed bin weight; red, eating (1-yes/0-no) from video observation). Bottom right, visualisation of 

processed signal (yellow, feed bin weight; red, eating (1-yes/0-no) from video observation; blue, eating 

(-1-yes/0-no) from feed bin weight processed). 

For the moment, we cannot reliably estimate the proportion of time spent eating vs. chewing during a 

meal from the variations of feed bin weights, such as with the BioControl system. 
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2.4 Feeding behaviour and feed efficiency 

The relationship between measures of feeding behaviour and feed efficiency was examined using a data 

set obtained by IRTA. 

An initial dataset of 40 Holstein dairy cows between 150 and 200 DIM from EVAM facility (Monells, 

Girona, Spain) was evaluated, and those cows with health events or incorrect feeding behaviour in the 

feed bins were discarded. Finally, a dataset of 30 dairy cows was used to study the correlations between 

feeding behaviour parameters and feed efficiency. 

Data collected from those 30 animals were: 

 Feed efficiency calculated as: energy-corrected milk (ECM, calculated as follows: (0.3246 × kg 
milk) + (12.86 × kg fat) + (7.04 × kg protein)) by TDMI (feeder + milking parlour) 

 Average and variance of eating rate, number of meals, number of visits, eating time in the feeder, 
and meal size. 

 

Data distribution, average, standard deviation and variance of eating behaviour parameters from the 

thirty cows are represented in the Figure 2 and 3 and Table4:  

Table 4. Average, standard deviation, minimum and maximum value, and variance of performance and 

feeding behaviour parameters per cow. 

Parameter Average Standard 
deviation 

Minimum 
value 

Maximum 
value 

Variance 

DIM 184 2.7 150 220 - 
Lactation number 2.2 1.3 1 5 - 
TDMI, kg/d 24.3 2.7 19.7 29.5 17.5 
ECM1, kg/d 30.5 5.21 18.3 41.2 11.6 
Feed efficiency2 1.30 0.197 0.83 1.70 0.08 
Feeding behaviour:      
  Number visits/day 43 10.5 25.2 61.5 11.6 
  Time in the feeder, min 195 42.5 106 296 1579 
  Eating rate, g/min 262 55.8 178 407 2270 
  Number of meals/day 8.6 2.29 5.68 15.30 5.7 
  Meal duration 32 10.5 16.4 56.8 131 

1 Energy corrected-milk calculated as: (0.3246 × kg milk) + (12.86 × kg fat) + (7.04 × kg protein) 

2 Calculated as ECM/TDMI 



 

 
 

14 
 

 

 

 

 

Figure 2. Distribution of the average of daily feeding behaviour parameters and feed efficiency per cow 
of the 30 dairy cows used in the dataset to establish relationships between feed efficiency and feeding 

behaviour. 
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Following data exploration, dispersion matrixes were done among eating behaviour variables to detect 

multicollinearity among them using the Pearson’s correlation coefficient. 

 

 

Figure 3. Dispersion matrixes between eating behaviour variables. 

 

Time in the feeder was highly correlated with eating rate (Pearson’s coefficient = -0.88), and moderately 

correlated with number of visits (Pearson’s coefficient = 0.61), and meal duration (Pearson’s coefficient 

= 0.65). Therefore, time in the feeder was discarded for the linear regression analysis.  

 

 

Figure 4. Correlation between eating rate and time in the feeder 

To determine the extent to which the regression coefficients depend on the parity of the cow, an analysis 

of covariance was performed using the variable, the parity, and its interaction as fixed effects. Parity was 

significant for number of meals variable. 

Then, eating behaviour variables described above with P < 0.20 in a univariate linear regression model 

to explain feed efficiency  (Table 5) were kept for a final multiple regression approach. Results from the 
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univariate linear regression models showed variables mean eating rate, mean of meal duration, variance 

number of visits and variance of meal duration with P < 0.20 (Table 5). Therefore, those variables were 

selected for a multiple forward stepwise regression analysis  

 

Table 5. Main statistics from univariate linear regression models of eating behaviour variables and feed 

efficiency. 

Variable R-square RMSE P-value 
Number of visits 0.04 0.196 0.29 
Eating rate 0.15 0.185 0.04 
Number of meals 0.002 0.200 0.81 
Meal duration 0.08 0.193 0.14 
Variance number of visits 0.12 0.188 0.06 
Variance of eating behaviour 0.0003 0.200 0.93 
Variance of number of meals 0.03 0.197 0.34 
Variance of meal duration 0.09 0.191 0.10 

 

The multiple stepwise regression analysis included eating rate and the variance of the number of visits 

in the model that better fitted feed efficiency. Finally, to fit the last model cow within parity was included 

as random effect before running the final model with the two covariates selected (R-adjusted = 0.27). In 

the final model, eating rate was negatively correlated with feed efficiency and the variance of the number 

of visits, positively. The final prediction equation was: 

Feed efficiency = 1.53 + (-0.0014 × eating rate) + [0.0011 × var(number of visits)] 

 

2.5 Sensor data for behaviour and feed efficiency 

The relationship between sensor data for behaviour , including eating time and measures of activity, 

feed efficiency was examined using two data sets: Data set 1, obtained by IRTA, and Data set 2, obtained 

by WUR-DLO.  

Data set 1 

Feed efficiency data and sensor data for behaviour were available for 24 cows from the IRTA farm. The 

parity ranged from 1 to 4: 13 primiparous cows, 8 in second lactation, 2 in third lactation and 1 in fourth 

lactation. For each cow data were available for around 60 days DIM ranging from 48-114 to 258-318. 

Available data were feed efficiency data and sensor data. 

Feed efficiency data: milk yield, ECM, body weight, DMI and FE. Data characteristics are provided in 

Table 6. The feed efficiency data were aggregated to cow level by taking the median value per cow. 

Table 6. Characteristics for feed efficiency data per cow per day 

 n average standard 
deviation 

minimum maximum 

Milk yield (kg/d) 1400 33.18 7.17 12.34 57.07 
energy-corrected milk (ECM) (kg/d) 1395 33.22 6.11 12.49 53.20 
Dry matte intake (kg/d) 1202 22.52 5.46 7.76 40.10 
Feed efficiency (ECM/DMI) 1198 1.57 0.47 0.47 3.26 
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Sensor data included the following behavioural measures: lying time, eating time and standing/walking 

time per hour (all in seconds, summing up per hour to 3600). Characteristics of the sensor data 

aggregated to day level are provided in Table 7. 

Table 7. Characteristics for behavioural measures recorded with sensors, per cow per day 

 n average standard 
deviation 

minimum maximum 

lying time (h) 1469 12.6 2.3 3.8 20.5 
eating time (h) 1469 2.6 1.0 0.0 4.9 
standing/walking time (h) 1469 8.6 2.4 0.0 19.3 

 

For each cow, each of these sensor-based behavioural measures was quantitatively transformed into the 

following five parameters (as described in Deliverable D7.3): 

 average 

 variance 

 autocorrelation 

 nonperiodicity 

 FFT 

This transformation, therefore, resulted a total of 15 sensor parameters met cow, i.e.: average lying time, 

average eating time, ..., FFT of standing/walking time. Pairwise correlations were examined between 

parameters, and  of each pair of parameter pairs with a correlation of more than 0.6 one parameter was 

not included in the multivariate analysis to avoid multicollinearity. 

The relation between feed efficiency data and sensor parameters was explored by three regression 

variants: 

1. Simple linear regression of feed efficiency data on sensor parameters 

Sensor parameters for feed efficiency with p-value less than 0.2 are: 

 autocorrelation eating time 

 nonperiodicity milking time 

 FFT eating time 

 FFT milking time 

2. Multiple linear regression of feed efficiency data on sensor parameter and parity group 

Sensor parameters for feed efficiency with p-value less than 0.2 are: 

For parity: 

 autocorrelation eating time 

 FFT eating time 

For the sensor parameters: 

 average milking time 

 variance eating time 

 variance lying time 

 autocorrelation eating time 

 nonperiodicity eating time 
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 nonperiodicity milking time 

 FFT eating time 

 FFT milking time 

 FFT lying time 

3. Multiple linear regression of feed efficiency data on sensor parameters and parity group with 

interaction. 

Sensor parameters for feed efficiency with p-value less than 0.2 are: 

For parity: 

 average eating time 

 variance eating time 

 autocorrelation eating time 

For the sensor parameter: 

 average eating time 

 variance eating time 

 autocorrelation eating time 

 autocorrelation milking time 

 nonperiodicity milking time 

 nonperiodicity standing time 

 FFT eating time 

 FFT milking time 

 FFT lying time 

For the interaction: 

 average eating time 

 variance eating time 

 nonperiodicity standing time 

For the multivariate model only parameters were included with p-value less than 0.2 in the multiple 

regression model with interactions. Parameters with p-values for the interaction term (covariate.Parity) 

less than 0.2 were excluded from the analysis. 

The best subset selection model for the regression of feed efficiency on parity, autocorrelation eating 

time, nonperiodicity standing time, FFT eating time and FFT lying time resulted in a model based only 

on parity and FFT eating time: 

FeedEfficiency = 2.216 – 0.129*ParityGroup – 0.468*FFT_EatingTime 

A scatter plot for the observed versus the predicted values is  given in Figure 5. The mean squared error 

is 0.0282, the adjusted R2 is 0.344. 
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Figure 5. Observed versus predicted values of feed efficiency per cow calculated with a model based on 

parity group and the sensor parameter for FFT on eating time. 

 

Data set 2 

Feed efficiency data and sensor data for behaviour were available for 50 cows from the WLR farm Dairy 

Campus. The parity ranged from 1 to 7: 11 primiparous cows, 15 in second lactation, 7 in third lactation, 

14 in fourth lactation, 2 in fifth lactation and 1 in seventh lactation. For each cow data were available for 

around 40 days in the start of the lactation, DIM ranging from 1-40 to 16-41. Available data were feed 

efficiency data and sensor data. 

Feed efficiency data: milk yield, body weight, DMI and FE. Two cows with less than 14 days with 

efficiency data were excluded from the analysis. Data characteristics are included in Table 8. The feed 

efficiency data were aggregated to cow level by taking the median value per cow. 

Table 8. Characteristics for feed efficiency data per cow per day 

 n average standard 
deviation 

minimum maximum 

Milk yield (kg/d) 1876 37.00 9.91 1.8 75.2 
Dry matte intake (kg/d) 1648 18.01 4.32 1.92 27.99 
Feed efficiency (Milk yield/DMI) 1609 2.17 0.70 0.28 8.29 

 

Behavioural measures recorded with the neck sensor were: inactive time, active time, ruminating time, 

eating time and activity. Behavioural measures recorded with the leg sensor were: number of steps, 

number of bouts, lying time, standing time, walking time and standing/walking time per hour (all in 
minutes, summing up per hour to 60 min.). Characteristics of these sensor-based behavioural measures 

aggregated at day level are provided in Table 9. 
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Table 9. Characteristics for sensor-based behavioural measures, expressed per cow per day 

 n average standard 
deviation 

minimum maximum 

inactive time (min) 1977 41.3 54.3 0 628 
active time (min) 1977 674.3 149.8 277 1432 
ruminating time (min) 1977 517.5 110.1 0 780 
eating time (min) 1977 206.5 81.8 0 444 
activity 1941 205.9 101.8 8 890 
number of steps 1921 4378 1600 5 19331 
number of bouts 1921 11.2 5.2 0 136 
lying time (min) 1921 599.7 148.4 95 1440 
standing time (min) 1921 788.5 140.8 0 1293 
walking time (min) 1921 51.4 23.2 0 258 
standing/walking time 1921 839.9 148.5 0 1345 

 

For each cow, each of these sensor-based behavioural measures was quantitatively transformed into the 

following five parameters: 

 average 

 variance 

 autocorrelation 

 nonperiodicity 

 FFT 

This transformation resulted in a total of 55 parameters per cow: average inactive time, average active 

time, ..., FFT of standing/walking time. Pairwise correlations were examined between parameters, and  

of each pair of parameter pairs with a correlation of more than 0.6 one parameter was not included in 

the multivariate analysis to avoid multicollinearity. 

The relation between feed efficiency data and sensor parameters was explored by three regression 

variants: 

1. Simple linear regression of feed efficiency data on sensor parameters 
Sensor parameters for feed efficiency with p-value less than 0.2 are: 

a. AvgNeckmAct, VarNeckmRumi, AC_NeckmEat, AC_LegnStep, AC_LegmWalk, 
MSENeckmInact, MSENeckmRumi, MSENeckmEat, MSELegnUp, FFTNeckmEat, 
FFTLegnStep, FFTLegmWalk 

2. Multiple linear regression of feed efficiency data on sensor parameters and parity group 
Sensor parameters for feed efficiency with p-value less than 0.2 are: 
For parity group 2: 

a. none parameters 

For parity group 3: 

b. all 55 parameters 

For the sensor parameters: 

c. AvgNeckmAct, AvgLegnStep, AvgLegnUp, AvgLegmWalk, VarNeckmInact, VarNeckmAct, 
VarLegnUp, VarLegmLie, VarLegmSsta, VarLegmStand, AC_NeckmEat, MSENeckmInact, 
MSENeckmRumi, MSENeckmEat, MSELegnUp, FFTNeckmEat, FFTLegnStep, 
FFTLegmWalk 
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3. Multiple linear regression of feed efficiency data on sensor parameter and parity group with 
interaction 
Sensor parameters for feed efficiency with p-value less than 0.2 are: 
For parity group 2: 

a. MSENeckmEat, FFTNeckmInact, FFTLegnStep,FFTLegmLie, FFTLegmWalk 

For parity group 3: 

 AvgNeckmEat, AvgLegmSsta, AvgLegmStand, VarNeckmEat, VarLegnUp, 
AC_NeckmInact, AC_NeckmAct, AC_NeckmRumi, AC_NeckAct, AC_LegnStep, AC_LegmLie, 
AC_LegmSsta, AC_LegmWalk, AC_LegmStand, MSENeckmInact, MSENeckmRumi, 
MSENeckmEat, FFTNeckmInact, FFTNeckmAct, FFTNeckmRumi, FFTNeckmEat, 
FFTNeckAct, FFTLegnUp, FFTLegmLie, FFTLegmSsta, FFTLegmStand 

For the sensor parameter: 

b. AvgLegmLie, AvgLegmSsta, AvgLegmStand, AC_NeckmEat, MSENeckmAct, 
MSENeckmEat, MSELegnUp, FFTNeckmInact, FFTNeckmRumi, FFTLegnStep, 
FFTLegmLie, FFTLegmWalk 

For the interaction 1: 

c. VarLegnUp, AC_NeckmEat, MSENeckmEat, MSELegnUp, FFTNeckmInact, FFTLegnStep, 
FFTLegmLie, FFTLegmWalk 

For the interaction 2: 

d. AvgLegmLie, AvgLegmSsta, AvgLegmStand, AC_LegnStep, AC_LegmWalk, 
MSENeckmInact, MSENeckmAct, MSENeckmRumi, MSENeckmEat, FFTNeckmInact, 
FFTNeckmAct, FFTNeckmRumi, FFTNeckmEat, FFTNeckAct, FFTLegnUp, FFTLegmLie, 
FFTLegmWalk 

For the multivariate model only parameters were included with p-value less than 0.2 in the multiple 

regression model with interactions. Parameters with p-values for the interaction term (covariate.Parity) 

less than 0.2 were excluded from the analysis. Seven parameters remained for the all possible subset 

selection: AvgNeckmEat, VarNeckmEat, AC_NeckmAct, AC_NeckmRumi, AC_LegmLie, AC_LegmSsta, 

FFTLegmSsta. 

The best subset selection model for feed efficiency (milk yield/DMI) was based on parity group, average 

eating time and variance of eating time: 

Feed Efficiency = 1.953 + 0.224*ParGroup3 + 0.0378*AvgNeckmEat – 0.00234*VarNeckmEat 

 

A scatter plot for the observed versus the predicted values is given in Figure 6. The mean squared error 

is 0.0682, the adjusted R2 is 0.140. 
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Figure 6. Observed versus predicted values of feed efficiency per cow calculated with a model based on 

parity group, the sensor parameter for average eating time and the sensor parameter for variance of 

eating time. 

3 Conclusion 

 It seems feasible to distinguish several internal states of animals (diseases, calving, estrus, 
stress) from their activity pattern (see paragraph 2.2) 

 Feed efficiency can best be predicted from measures of feeding behaviour (see paragraph 2.4).  

 When added to measures of eating time, sensor-based parameters related to activity do not 
significantly contribute to the prediction of feed efficiency (see paragraph 2.5).  

 There was no consistency between countries (Spain vs. the Netherlands) in the type of model 
that was obtained when predicting feed efficiency from measures of eating time and sensor-
based parameters related to activity (see paragraph 2.5). 
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