Natural ¹⁵N abundances in plasma and urea-N concentration in milk as biomarkers of urinary N excretion in dairy cows: a meta-analysis

<u>S. M. Nasrollahi</u>*, P. Nozière*, R. J. Dewhurst^{\$}, C. Chantelauze*, L. Cheng[†], E. Froidmont^{††}, C. Martin^{*}, G. Cantalapiedra-Hijar^{*}

*INRA ^{\$}Scotland's Rural College †The University of Melbourne ††Walloon Agricultural Research Center

6th EAAP INTERNATIONAL SYMPOSIUM ON ENERGY AND PROTEIN METABOLISM AND NUTRITION September, 9-12th of 2019 Ouro Minas Palace Hotel - Belo Horizonte, MG - Brazil

an integrated infrastructure for increased research capability and innovation in the European cattle sector

Domain:

7 countries; 11 research infrastructures; 3500 cattle

Objective:

Integration of research infrastructure for the EU cattle sector

Work package 6:

Developing	and	evaluating		promising
biomarkers	to	predict	gold	standard
methods				

www.smartcow.eu

Introduction

Nitrogen utilization in ruminants

- Ruminants play a critical role in converting low-quality nitrogen (N) sources into high quality protein
- The efficiency of conversion depends on the balance between nutrient supply and animal requirements
- Low efficiency results in high N excretion having environmental and economical consequences

How N excretion can be measured?

Gold standard method (GSM): Total collection of separated urine and feces But with several constraints:

- Costly and labor intensive
- Error of measurements
- Not be able to conduct on large numbers of animals (genetic objective) and for long time
- Animal welfare issues

Prediction by promising biomarkers as alternative for GSM?

Potential biomarkers for urinary N excretion

BIOMARKERS	Mechanisms	Advantages	Drawbacks
MUN: milk Urea-N BUN: blood Urea-N	N from rumen or body catabolism converted to urea	Easy to measure	Diurnal variations
(Hof et al., 1997) (Huhtanen et al., 2015)	Urea is soluble in blood, milk and urine	Evaluation of N excess in the diet	Not detecting individual variability
Δ ¹⁵ N _{animal-diet} :	Common pathways:	No diurnal variations (stable)	Time consuming analysis
animal proteins over the	Hepatic transaminase (Cantalapiedra-Hijar et al., 2015)	Detection of Individual	Diat dapandant
diet (N isotopic discrimination) <i>New/Promising</i>	External transport of NH3 by rumen bacteria (Wattiaux and Reeds, 1997)	variability	responses? (i. e. High rumen NH3)

Potential of combination?

Objective

Evaluation of $\Delta^{15}N_{animal-diet}$ alone or in combination with urea in milk or blood as a biomarker of urinary N excretion in dairy cows

Materials and Methods

Preliminary dataset

Criteria

- 1. Dairy cows
- 2. Measuring urinary N excretion (UNE) : Total collection for urine for $\geq 3 d$
- 3. Measuring either $\Delta^{15}N$ or both $\Delta^{15}N$ and MUN (BUN)

Value	Experiment	diet	observation
n	9	34	177

Cows and diets description

Item	Mean	SD	Min	Max
Cow performances				
DIM, d	103	55.1	61	221
MY, kg/d	26.6	7.0	13	33
BW, kg	583.6	182.5	200	754
Diet characteristics, % of DM				
Forage	71.1	18.3	56	100
СР	16.3	3.3	11.0	24.5
NDF	41.8	7.5	25.5	58.9

Gold standard measurement and biomarkers description

Item	Mean	SD	Min	Max
Urinary N, g/g N intake	0.33	0.12	0.13	0.86
Δ ¹⁵ Ν _, ‰	3.27	1.06	1.65	6.15
MUN, g/L	0.12	0.06	0.006	0.27

- To increase comparability among experiments, values of UNE were adjusted for the amount of N intake
- Values with >3 SD difference from mean were remove if biological reason justified their elimination

Statistical analysis: Mixed-model regression

Urinary $N_{ij} = (\beta 0 + b0_i) + (\beta 1 + b1_i) \Delta^{15}N_{ij} + (\beta 2 + b2_i) MUN_{ij} + \varepsilon_{ij}$

- $\beta 0$ and $\beta 1$, $\beta 2$ are the fixed effects for the intercept and slopes, respectively.
- The b_i are the random effects of grouping factors (experiment/period/diet).
- ϵ_{iik} is errors of the model.
- Random effects were tested on <u>intercept</u>, slope or both and models compared based on AIC/BIC and log likelihood ratio criteria.
- Collinearity between both biomarkers was checked using variance inflation factor (VIF)

Results

Relationship between urinary N excretion (UNE) and $\Delta^{15}N$ or MUN

Colored lines are individual experiments; colored symbols are individual observations

Relationship between urinary N excretion (UNE) and $\Delta^{15}N$ or MUN

Colored lines are individual experiments; The solid line is the overall relationship

Fitted equations for urinary N excretion (UNE): the output of mixed model analysis

1) Urinary N (g/g of N intake) = $0.183 + 0.045 \Delta^{15}$ N (‰) residual SD% = 13.9; P<0.01

2) Urinary N (g/g of N intake) = 0.288 + 0.313 MUN (g/L) residual SD%= 14.6; P<0.01

3) Urinary N (g/g of N intake) = $0.146 + 0.043 \Delta^{15}$ N (%) + 0.339 MUN (g/L) residual SD% = 13.6; P<0.01

Conclusions

- Both $\Delta^{15}N$ and MUN had a potential to predict urinary N
- Combination of Δ¹⁵N and MUN may strengthen the prediction capacity of the model

Perspectives

- Increasing of the dataset size for 3-4 times with new experiments
- Analyze interfering factors
- Model validation for its use in field conditions: guidelines

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°730924.

.018